
1

17 years of
Mercurial at Logilab

. . . and 23 years of version control !

2

TLDR: Timeline of VCS

Version Control Systems have been used to:

record the changes of a file (versions)

record the changes of a set of files (commits)

track the process of review and collaboration (branches)

support changing the changes (evolution of draft commits)

1.

2.

3.

4.

3

Before it started - command cp

No tool

cp -r of files and directories

name them with date or number

use diff , mv or ln -s to go back in time

4

Before I started - RCS

Revision Control System

rcs command to go back in time

record multiple revisions of a single file

no network features

5

2000 - CVS

Concurrent Version System

cvs to exchange files with centralized network server

revisions handled file by file

no branches

6

2005 - Subversion

centralized network server

commits with multiple files

branches

branching and merging not easy

7

2005/2006 - So many options !

Linux Kernel stopped using BitKeeper because of licensing

issues: many tools appeared !

We tested mercurial, git, darcs, etc. then picked hg because

better CLI and extendable since written in Python

We switched everything to mercurial within a few months.

8

2006 - Mercurial

decentralized: ci/up are local then push/pull

no server but shared repositories via ssh accounts

Mercurial-Server to have r/w permissions and http urls

9

Contribute to Mercurial

Free software written in Python with an extension system

Contributed to extensions

Hosted development sprints

10

Review process

Collaborative software development requires review

mq extension to manage patches to apply as with quilt

create a companion repository to version the patches, then

review and apply

11

Iterative reviews

Review requires back-and-forth communication, but with

mq difficult to rework a stack of patches

need to push/pull/rebase patches as easily as commits

P.Y. David employed at Logilab. Got hooked to Mercurial and

started phase then evolve before leaving to Facebook.

12

Forges to support the software dev. process

Rise of GitHub, GitLab and others

Logilab included Mercurial-Server and draft changesets in

the forge it was developing (projects, issues, versions, CI,

artifact repositories, etc)

13

2020 - Heptapod

Logilab's own forge abandoned, switch to heptapod with

support from Octobus

14

Everything is version controlled

in 2023 as in 2000, we put everything under version control:

internal documentation, commercial offers, accounting,

source code, infrastructure code, etc.

15

Intensive use of .gitlab-ci.yml

jobs to lint, test, build doc and containers, deploy in

kubernetes with helm, update infra, etc.

scheduled or manual pipelines to generate documents,

update or sync data, etc.

16

Pages and artifact repositories

manuals, reports, dashboards and websites using pages

Python packages, Containers, Helm Charts, etc.

17

On-demand applications

start and stop rewiev apps

CubicWeb-as-a-Service apps built from ontologies

With API Almost a Function-as-a-Service platform

18

What else ?

no code search (tried sourcegraph)

code-doctor to generate Merge Requests to upgrade

python, ci, dependencies, etc.

use LLM maybe ?

19

Version Control Is Everywhere

the idea of version control has spread everywhere:

infrastructure (gitops), datasets, work environments: tools

can create versions and push/pull

20

Want more ?

Law as Code: talk at conference "La Fabrique de la loi" in

2012 => law process is like version control + review process

Training: use commits to drive an exercise step by step.

21

Mercurial is at the
heart of Logilab

22

23

24

25

26

Contact

Nicolas.Chauvat@logilab.fr

27

